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Abstract, Much effort has been expended in the past decade to calculate numerically the
exponents at the collapse transition point in walk, polygon and animal models. The crossover
exponent ¢ has been of special interest and sometimes is assumed to obey the relation
2—a=1/¢ with the @ the canonical (thermodynamic) exponent that characterizes the
divergence of the specific heat. The reasons for the validity of this relation are not widely
known. -

We present a scaling theory of collapse transitions in such models. The free energy and
canonical partition functions have finite-fength scaling forms whilst the grand partition
function has a tricritical scaling form. The link between the grand and canonical ensembles
leads to the above scaling relation. We then comment on the validity of current estimates
of the crossover exponent for interacting self-avoiding walks in two dimensions and propose
a test involving the scaling relation which may be used to check these values.

1. Introduction

The number of models of a polymer molecule in a dilute solution of a good solvent
is growing rapidly [1]. Many are constructed to model the collapse phase transition
that the polymer undergoes as the temperature or the quality of the solvent is reduced.
At temperatures above the critical temperature the polymer is in an extended or ‘coiled’
phase, whilst below, it collapses to a compact “ball’ shape. Another system with similar
features is vesicles in solution. These are formed by closed surfaces of lipid membranes
the shape of which can be controlled by changing the surface or volume fugacity. If
a distinct shape change occurs at a particular temperature or fugacity then we have a
phase transition. This behaviour is analogous to the polymer collapse (if we understand
surface fugacity as playing the role of temperature) and we expect some universal
features. A :
Qur paper is concerned with the scaling theory of the phase transition occurring
in geometric cluster models of linear, ring and branch polymers and of vesicles. We
shall argue that this class of models has a similar mathematical structure which enables
us to present a generic set of scaling forms. In particular, we present scaling forms for
the grand partition function (strictly it is a generalized partition function}, the canonical
free energy and the canonical partition function. The generalized partition function
has a tricritical scaling form whilst the free energy and partition function have a
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finite-size crossover scaling form. These scaling forms apply in both the expanded and
collapsed phases. In the collapsed phase the surface of the polymer plays a significant
role in the low temperature finite-size scaling form. The scaling forms in the high
temperature phase lead to the tricritical scaling relation

1
—g=— 1
2—a ¢ (1)
where @ is the specific heat exponent and ¢ the crossover exponent. This scaling
relation enables us to make some strong comments on recent attempts to numerically
evaluate the two dimensional crossover exponent of the interacting self-avoiding walk
model (1saw) of the collapse of linear polymers.

The scaling functions we present occur in two forms. The first form is more general
and assumes the specific heat exponent « exists on both sides of the phase transition.
The second form assumes @ eXists only in the high temperature phase. Although the
second is a particular case of the first, we present it because for several of the models
the low temperature specific heat is analytic at the collapse transition (and so has no
singularity there). The models which are known to have this unusual property include
all vesicle models [2] and the interacting partially directed walk model (1ppDsaw) [3].
We will refer to the models whose specific heat is singular on both sides of the fransition
as the symmetric models, and those whose specific heat is analytic in the low temperature
phase as the asymmetric models. It is not known whether the 1AW model or interacting
lattice animal models [4] of branched polymers (1LA) are symmetric or not.

2. Generic structure

We now define the geometric cluster models more carefully and argue that they ail
have a similar mathematical structure which is conveniently represented by a singularity
or ‘phase’ diagram. This diagram shows the radius of convergence of the generating
function of the canonical partition functions. This diagram is important as it is here
that the tricritical structure of the collapse transition is apparent. The diagram differs
significantly depending on whether the model is symmetric or not.

2.1. The models

The models considered in this paper are defined by two principal ingredients: (i) the
monomers of the polymer or lipid layer of the vesicle are represented by a ‘cluster’ of
sites or bonds on a lattice and (ii) the agent responsible for the phase transition is
modelled by a nearest-neighbour interaction or equivalent fagacity, such as the surface
fugacity in vesicles. For example, the cluster of branched polymers is a lattice animal,
for linear polymers it is a self-avoiding walk, for ring polymers and vesicles it is a
self-avoiding polygon (though in the latter the cluster size and collapse agents are
different}. Mathematically, each system is characterized by some cluster size n and
some other parameter that varies the strength of the collapse agent. We now provide
some concrete and typical examples of the above.

The 1saw model of polymer collapse consists of a n-step self-avoiding walk with
an attractive interaction energy —J < 0 between any two nearest-neighbour sites of the
walk (not connected by a bond of the walk). An example of such a walk is shown in
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figure 1(a). The canonical partition function for the model is given by
Ziw)= Y wm (2}
config.

where the Boltzman factor w=exp(8J), c\?’ is the number of configurations with n

steps and m interactions and the sum is over all configurations of the n-step walk.

T i :

d)

o

Figure 1. A selection of cluster models illustrating a typical configuration: (a) interacting
self-avoiding walk model of linear polymers—Ilight lines show the nearest neighbour
interactions, (b) self-avoiding polygon model of vesicles—shaded squares show the area,
(c) interacting partially directed seif-avoiding walks (only north, south and east steps
allowed)—light lines show the nearest neighbour interactions and (d) row-convex self-
avoiding polygon model-—shaded squares show the area.

From the partition function we construct the generating function,
GP(w,z)= Y Zi(w)z". 3)
n=1
The generating function can also be interpreted as a ‘generalized’ partition function
with z a fugacity controlling the average length of the walks. A ‘generalized’ partition
function differs from a grand partition function in that there is no parameter, analogous
to the volume, which can be used to take the thermodynamic limit.

Expressions similar to (2) and (3) occur for the interacting polygon models except
now the configurations are self-avoiding polygons and n is the length or perimeter of
the polygons.

The geometric cluster model of vesicles consists of a self-avoiding polygon with a
perimeter and area fugacity. As opposed to ring polymers here the area plays the role
of the size n of the system. An example of such a polygon is shown in figure 1(b).
The canonical ‘partition function’ is

Zi(x)= % pix" @)
config.
where p'7’ is the number of polygons with area n and perimeter m. The sum is over
all configurations of the polygon with fixed area, n. The generating function is

G'(%y)= L Zix)y" (®)
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If G is interpreted as a generalized partition function then y is an area fugacity.
Similar expressions are obtained for the lattice animal models of branched polymers.

2.2. The singularity diagram

Many features of these cluster models are concisely represented by a ‘phase’, or
singularity, diagram. This diagram shows the radius of convergence of the generating
function which is of particular relevance as it is directly related to the canonical free
energy. Both equations (3} and (5) for the generating functions are of the same form,
that is, a generating function of finite polynomials; thus we will use G7 in what follows,
but the derivation is general. The 1saw total free energy is

Fﬁ(W)=—%Iog Z2(w) ©)

and assuming the thermodynamic limit exists, we have for the thermodynamic free
energy per step

2w) = lim - F(w) ™

which in turn implies that
Fi(w) = nf&(w)+o(n). (8)
Using (3), (6) and (8) gives (for fixed w)

w .
G?(w,z)= T " (ze &), (9)
mas]
If G” is considered as a function of the generating variable, z (with w a parameter)
then (9) implies the radius of convergence of G?, for each value of w, is given by
-85
ze "e=1 or

Zo(W) = exp(Bf%). (10)

Thus a plot of z,(w), in the (w, z)-plane is indirectly a plot of the free energy per step
of an infinite length walk.

This plot, showing the radins of convergence of the generating function, for each
value of the temperature variable—w in this case—will be referred to as the singularity
diagram. Note that the existence of the free energy ensures that z(w) exists for all
w>0 and so (10) implies that z.(w) is always positive. Figure 2 shows two schematic
singularity diagrams. The first form (Figure 2{a)) is expected to represent the 1saw
and 1La models, and is known to represent the 1pDsaw model [3]. The second form
(figure 2(b)) is known to represent vesicle models [2, 6].

Different parts of the singularity diagram correspond to distinct features of the
model, Thus for the 1sAw model, if in the thermodynamic limit, the model undergoes
a phase transition at some temperature T, the free energy fE(w)} will be singular at
w.=exp(J/ksT.} and hence so will z.{w). Thus, if z.= z(w.), we can represent the
phase transition (in the canonical ensemble) by the point (w,, z.). The line z.(w) for
w < w, corresponds to the high temperature phase, whilst the line z.(w) for w> w,
corresponds to the low temperature collapsed phase. As G7 is a partition function in
the generalized ensemble we can use it to evalvate averages of thermodynamic variables.
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Figure 2. (a)} The expected form of the singularity or ‘phase’ diagram for the interacting
self-avoiding walk model of linear polymers. (b} The singularity or ‘phase’ diagram for
the self-avoiding polygon model of vesicles [2].

In particular, it is possible to show that the average length of the walk is finite in the
region 0=z <z, {w). Thus, the region below z.(w) corresponds to a finite length
‘phase’. Similar interpretations occur for the vesicle models. Note that the region above
z{w) is non-physical for the class of models considered here. (This can be changed
if the models are extended by introducing a bounding box to contain the clusters, that
is, a volume parameter.)

2.3. Generic structure of symmetric and asymmetric models

Superficially, the two singularity diagrams (figure 2) appear quite different but by a
change of variables the generic structure becomes apparent. Firstly, one considers each
singularity diagram in an equivalent way to the (w, z) plane for the walk models: for
example, in vesicles the (1/x, y)-plane is similar. Let us call the abscissa w. Now
consider the function z,(w) at low temperatures, that is large o, and call this zZ{e).
There are two possible cases.

Firstly, if this function is analytic for all ® including w. then we can transform our
variables to a generic pair (w, g) where go{w)=1 for all > w.. (Of course z%(w)
must then have a singularity at w. for some transition to exist!) For vesicles we have
simply that @ =1/x and g =y and in the 1PDsAaw problem we have w =w and g = wz.
In general we have ¢ =z/z..(w) and so we can define a generic partition function as
Q.{w)=[2(w)]"Z,(w). The generic generating function is

G(0,0)= T Qulw)q” (1)

and the corresponding singularity diagram in the {w, q} plane is shown in figure 3(a).

Secondly, if this assumption of analyticity of z{w) at &, is false then let us examine
the asymptotic behaviour of z.(@)} as @ -0, that is, as the temperature approaches
zero. Let

Zo{@) ~ 2,(@) (12)
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Figure 3. The schematic singularity diagrams, in the generic variabies o and g, (a) for the
asymmetric models and (&) for symmetric models (the low and high temperature lines are
curved but whether they are concave or convex will be model dependent. The dashed line
in both figures is the line g=1.

50 by using a suitably chosen z,{w) in this case, in the same fashion as z;{w) for the
previous case, we obtain a phase diagram as shown in figure 3(b). Hence g =z/z,(w)
and Qu(w)=[z.(0)]"Z,(v).

The above is simply describing transformations which allow us to consider the
generic forms (figure 3} of the phase diagrams for these models. We have divided the
models into two categories, the first we shall call asymmetric while the second symmetric,
This partitioning of the models into two categories becomes logical when we examine
the generic free energy foo = —lim,_.. log(Q, )/ Bn. The radius of convergence of G(w, g)
occurs for

geo(w) = exp(Bfw)) (13)

and the phase transition occurs at w =w, and g, = g{w.). If the phase transition is
second order, then the singular part of the free energy would be expected to behave like

Foom 127 t=T-T.. (14)

For the asymmetric models (figure 3(a)) the radius of convergence in the low tem-
perature phase has go(w)=1 for all w> w,. This implies that the low temperature
generic free energy, Bf .= log[g<(w)] is zero for & > @, and hence (trivially) an entire
function. Thus the asymmetric models do not have a singular specific heat in the low
temperature phase, that is, a non-trivial o does not exist. Whereas, for the symmetric
models (figure 3(b)) the free energy in the low temperature phase f is some singular
function of @ which gives rise to an « in the low temperature phase. In the high
temperature phase the specific heat of both the symmeiric and asymmetric models is
singular, that is, a non-trivial o exists. Thus the symmetric models have an « in both
phases whilst the asymmetric models only have a high temperature . The nomenclature
is therefore self-evident.

While one would normally expect symmetric transitions in other models (such as
Ising) recent exact and rigorous results point in the other direction for certain geometric
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models [2, 6]. There remains the intriguing possibility that all the models might be
asymmetric and thus, with appropriate choice of the g variable, figure 3(a) would be
the generic form of the singularity diagram.

Whichever category the model falls into we now summarize the mathematical
aspects of behaviour of the generating function necessary to produce the scaling forms
subsequently given. We conjecture that in the high temperature phase, g%(w) is a line
of simple singularities (e.g. a pole, branch or log singularity) and hence the generating
function diverges, whilst in the low temperature phase g={@) is a line of essential
singularities. (We describe these assumptions mathematically later). The essential
singularity is such that G remains finite on the line go{w). The evidence comes from
two sources. Firstly, all the exact solutions of vesicle models [5] and the rPDsaAw model
[6, 3] have this structure, and secondly there is a very close relationship between the
above class of models and the problem of condensation in fluids. {These features do
not depend on the symmetry of the transition.) As shown by Fisher [7] the condensation
line is a line of essential singularities. The consequences of this relationship have
already been shown in Owczarek et al [8] and further details may be found in
Prellberg et al [91.

This singularity structure is significant as it bnngs to mind the singularity structure
of a tricritical phase transition. If a tricritical point is taken to be the meeting point
of a line of first order transitions (essential singularities) with a line of second order
transitions (simpler singularities), then, at least for 0<g=<g.{w), the singularity
structure of G corresponds to that of a tricritical phase transition, with (w,, g.)
corresponds to the tricritical point. This leads directly to the tricritical scaling form
for the generating function.

3. Scaling farms

We now consider the scaling forms. In the canonical ensemble the partition function
and the free energy both depend on the length parameter n. In the limit # - c© we have
the thermodynamic limit and it is only in this limit that we have the possibility of a
phase transition. However, if the thermal correlation length is smaller than the average
size of the finite length walk the system behaves thermodynamically as if it was of
infinite size. As the critical temperature is approached the thermal correlation length
begins to diverge, as if it were an infinite system, and at some stage approaches the
size of the system. The finite size aspects of the system then dominate, Thus the system
crosses over from opne type of behaviour to another. This crossover behaviour is
described by the finite-size crossover scaling functions of the free energy and partition
function.

As discussed above the generating function or generalized partition function has
a tricritical singularity structure and so in the region of the tricritical point is represented
by a tricritical scaling function.

We thus have two types of scaling behakur finite-size scaling and tricritical
scaling, and consequently a large number of critical exponents. This can lead to
confusion, not only as to which type of scaling the exponent is associated with, but
also because exponents using the same symbol may be confused with those already
in use in the general literature. It is for these reasons that we first summarize the
structure of a conventional tricritical point and so establish a ‘generic’ set of tricritical

exponents.
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3.1, Conventional tricritical scaling

We shall keep as close to Griffiths [10] and Lawrie [11] as possible. The structure of
a conventional tricritical point and the associated exponents is illustrated in figure 4.
These exponents are emphasized by superscripting with g (for ‘generic’). Here, ¢ is
taken as a temperature variable measuring the tangential deviation from the tricritical
point, and g is the second scaling variable measuring an angular (that is, non-tangential)
deviation from the tricritical point. Generally a first order phase transition occurs as
the r-line is crossed (and is usually a line of essential singularities) and a second order
phase transition occurs as the A-line is crossed (and is nsually a line of branch or
pole-like singularities). The 7-line and A-line are assumed to meet tangentially at the
tricritical point. The equation, g,(¢) of the A-line in the neighbourhood of the tricritical
point is characterized by the shift exponent 3 through

gn(r)~ 1'% (15)
and similarly for the r-linet.

g (e}
2 {0-t%

Figure 4. Conventional tricritical scaling diagram showing the two sealing axes g and ¢
and the associated exponents. The large arrows show the path of approach associated with
the corresponding exponent.

It is assumed that the free energy is oniy singular on the 7 and A lines and analytic
elsewhere in the (t, g) plane. In the neighbourhcod of the tricritical point the singular
part of the canonical free energy is assumed to have the scaling form

R*(g, )~ |t~ (gle[~*)

?*(x)—-{

[x[*¥ as x->00
(16)

1 as x-»0.
where 7*(x} is the scaling function, which is analytic in the neighbourhood of x =0
and generally depends on the sign of t—as denoted by the =, The tricritical exponent
af is defined by the relation 2—af=(2-af)/¢* The exponent ¢* is the tricritical
CTOSSOVEr exponent.

T Note that in this paper we take f(x}~g(x} to mean lim,_ . f/g = constant %0 (rather than one). This
avoids the frequent introduction of constants.
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Along the A-line, for ¢t >0 and for fixed g <0 the free energy is assumed to have
the asymptotic form

R(g, 1)~ ro(g)+ r(g)|#[**°. (17)

where { =t —g, (2} and ro(g) and r,(g) are analytic functions. Consistency of (16}, (17)
and the analyticity of the free energy elsewhere in the (4, g) plane require that the shift
exponent and crossover exponents be equal:

f=¢* (18)

The assumed non-cuspish shape of the A-line implies that ¢£ = 1. A similar argument
leads to % = ¢% Note that if the 7 line corresponds to the scaling axis then 2 is not
defined. :

3.2, Tricritical scaling of the generating function

We begin by defining the ingredients that go into forming our scaling picture. At high
temperatures (small w) the generating function is assumed to be characterized by the
exponent v, as g go{w) from below at fixed w:

Glo, g) ~ (qulw) —q) ™. (19)
At the critical point a different exponent vy, is assumed to replace y. so
G(wca Q) -~ (qca(wc) - QJ"?’- i (20)

However at low temperatures (o> @) we assume that G converges in the limit
4= o), though with an essential singularity which we describe Jater. Now; assuming
that tricritical scaling holds around the point (w,, g.) we can proceed to write down
the scaling forms. Firstly we transform to scaling axes, if necessary. To set up the
appropriate coordinate system for scaling we use the notation ¢ for the thermal scaling
field and p for the fugacity field. In the asymmetric case we have simply e =w.—w
and p = g.— g, while in the symmetric case these are chosen appropriately tc arrive at
a scaling-region-singularity diagram as in figure 5.

Figure 5. Schematic tricritical scaling diagram of the generating function (or generalized
partition function) showing the scaling axes p and £ and the associated exponents, The
low temperature line coincides with the ¢ axis for asymmetric models, but goes above {as
shawn), or possibly below, for the symmetric models.
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The location of the & scaling axis fall into two cases: (i) for the asymmetric models
the = scaling axis corresponds exacily to the singular line while (ii) for the symmetric
models the low temperature scaling axis does not correspond with the singular line
(but is tangential at (0,0)). In the neighbourhood of the point (e, p)=(0,0) the
generalized canonical partition function has a singularity structure of the same form
as a conventional tricritical point. Thus, for &> 0, the shape of the p*(¢) line (being
the transformation of the line g%(w)) defines a shift exponent through

pt~g? (e>0). (21)

{Note that one must choose p so that the leading order of the asymptotic form is given
by the singular part of p*(e).} For the asymmetric models there is no shift exponent
for £ <0 as the first order line coincides with the scaling axis, whilst for symmetric
models there is a low temperature shift exponent. The singular part of G has the
scaling form

G’(g, p)~e|™&*(ple| /%)

- fx| 77 as x>
§ (x) {1 as X0 (22)

where the + superscripts refer to temperatures above and below the critical temperature.
The exponent v, is defined by ¥, = v,/ ¢ and ¢ is the tricritical crossover exponent.
We do not define more precisely the behaviour of g7(x) as it approaches the essential
singularity other than the note that it occurs at some point, X~ say, which may be zero.

For £ >0, G is singular along the line p*(¢). Here, for p=<p*(¢), G diverges with
the asymptotic form

G~ go(e)+&:i(e)(p" () —p) ™™ (23)

This requires the scaling function §¥(x) to have a singularity at x = %", where it behaves
like

E(x)~(x—%")"" x->xT. . 24)

As G is singular along the line p*(z) and analytic below, it ensures that ¢ =1/ ¢. Note
that there is a small difference between the scaling form (22) and the conventional
scaling form in that ¢ corresponds to 1/ 4%, which we define to be consistent with the
literature on walk and polygon problems.

We now compare (21) with (14) and use the fact that the line defined by p™(¢) is
related to the free energy through (13) and ¢ ~ ¢ then considering the singular parts
of both functions at the critical point leads immediately to

r=2—a. (25)

This is the first relation between exponents in different ensembles: the shape of the
high temperature line in the generalized ensemble is related to the specific heat exponent
in the canonical ensemble. This relation subsequently leads to the relation (1) because
y=1/9.

A word of explanation on the use of the character ‘¥’ in the tricritical scaling form:
We use v (as opposed to some other Greek character) because & is a generating
function analogous to ren-interacting self-avoiding walks where the asymptotic form
of the generating function is characterized by the exponent v. Note that for the
self-avoiding polygon model of vesicles ¥ is usually replaced by 2— a,,, because this
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polygon model maps onto a magnetic model where «,, is the magnetic specific heat
exponent. This exponent is not the same as the a we have previously mentioned.

3.3. Canonical scaling

In this section we consider the scaling form of the canonical partition function and
the canonical free energy. Several ingredients have gone into the construction of these
scaling forms which we briefly discuss before presenting the scaling forms.

Firstly they must describe finite-size crossover. A finite length walk does not undergo
a phase transition. All finite n thermodynamic functions must be analytic functions off
the temperature and number of steps. It is only in the thermodynamic limit # -> o0 that
we have a phase transition and non-analyticity. The crossover from the finite size
behaviour to the infinite size system occurs when the thermal correlation length falls
below the average physical size of the walk. The finite-size crossover behaviour is
characterized by a crossover exponent, ¢.. We show later that ¢, in fact equals the
tricritical crossover exponent, ¢.

Secondly, the partition function is generated by G{w, q): It is well known that the
generating function for non-interacting self-avoiding walks has the asymptotic form
W{z)~(z—z,) 7, which in turn means that the asymptotic number of n-step walks
behaves like z3"n”"!. Now, as Q, is generated by G(w, q), this would suggest that
Q. ~ gu(@ ) "n?"’. Furthermore, the tricritical scaling of G requires the value of ¥ to
be different for w < w. and o = w, where the above behavigur of the generating function
is believed to hold.

Thirdly, the collapse models are related to the condensation transition of fluids.
As already shown [8] we expect a surface area contribution to the free energy in the
low temperature phase. The argument presented requires the free energy to have an
n” term with 0<o=1-1/d (oc=1-1/d occurs if the surface is ‘smooth’}). This is
possible if Q, ~ g%l n*-"', for some u,. Note that the factor of n”~" is allowed for
the sake of generality but does not implythe (g — g.,) 7 form in the generating function.

For convenience, figure 6 shows the asymptotic region the canonical scaling func-
tions must represent and the associated exponents. The dashed line is the locus of
specific heat maxima and, unlike the tricritical singularity structure, this is not a line
of singularities. This is a fundamental difference between tricritical scaling and finite-
size scaling. For finite » the partition function must be analytic in & and conventional
scaling arguments [11] would suggest that the finite-size scaling function should be
analytic at the origin. Putting all the above arguments together gives rise to the partition

1/n

oY T / T

v

Low temperature phase

High temperature phase

Figure 6. Finite-size crossover scaling diagram showing the scaling axis 1/nand t=T— T,
and the associated exponents. The large arrows show the path of approach associated with
the corresponding exponent. The line n™ %« is the locus of specific heat- maxima, Note that
this is not a line of singufarities (unlike the lines in the tricritical scaling diagrams).
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function scaling form

Qulw) ~[gin™"Z(8wn)

3(x) ~ {x ~(Ve— vl o’ as x>+ (26}
el ~ (e = y-)/ popal1" et/ as x> —co
where g3, is the analytic part of g.,(w) and u. and g, are constants with
_>1 symmetric models
t (sy ) o
po=1 (asymmetric models).

Given this scaling form for the partition function we can now deduce the scaling
form for the free energy. Substituting (26) into (6) and using 8w ~t gives the finite
size scaling of the singular part of the free energy as

. 1
VHORS (G
“x%e as x>0
Flx)~4 |x]7/% as x - —c0 (asymmetric models) (28)
|x|*/ e as x— —0 (symmetric models).

Let us for 2 moment focus on the high temperature situation. This scaling form for
[ implies that

Sar g% (T>T.). ' (29)
This is only consistent with (14), if the tricritical scaling relation
ol (30)

(] .
is satisfied. Thus, we see that the assumed scaling form of the canonical partition
function leads, via the induced free energy scaling, to the tricritical scaling relation.
Comparing the tricritical scaling relation (30) with (21) shows that ¢ =1/ ¢. and hence

¢e= ¢ (31)

Thus the tricritical crossover exponent is equal to the finite-size crossover exponent,
Furthermore, one can equally well show, although tortuously, that by only assuming
a scaling form for the free energy (with some ¢, and satisfying (14) in the n- co limit)
that consistency with the tricritical scaling of the generating function leads to the two
equations above.

As an aside, to which we shall return, the scaling form (28) is frequently used in
numerical procedures to estimaie the value of the crossover exponent, With this scaling
form it is possible to show that if the finite length intensive specific heat has 2 maximum
height at some temperature, t,, then the height, 4, and 1, behave (given «>0), for
n -0 like,

h, ~n*®

(32}
t,~ n~%,

{Note that if « <0 then h, ~1.) We make further comments on the use of (32) in the

discussion section,
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4. Discussion

We have shown that the simple assumption of a generic crossover phenomenon places
restrictions on commeonly defined exponents at the collapse transition in an interacting
geometric cluster model. In particular the relationship 2~ =1/ ¢ is a straightforward
consequence of this mild and common assumption. The conclusion of this clear
argument is now used to throw light on a wide range of problems which have been
investigated in the literature.
~ The crossover exponent at the collapse transition is a value of perennial interest
in many problems (especially in two dimensions where it should take on a non-trivial
value) such as interacting self-avoiding walks [12-217 and (the related problem of)
rings [22], interacting self-avoiding trails [23-26], vesicles [27, 2], interacting walks
and trails on a Manhattan lattice [28, 291, interacting partially directed walks [30] and
site lattice animals/branched polymers [31-35]. Attempts at discovering its value in
these systems has been made with a variety of methods incloding transfer matrix {12,
14, 29-31], exact enumeration/series extrapolation [13, 22, 23, 27, 2, 35], Monte Carlo
[16-21, 24-26, 32-34] and renormalization group techniques [12, 16-19]. The assump-
tions involved in considering the collapse transition as a generic crossover phenomena
are widespread. Importantly, often the relationship (1) is assumed in these calculations.
For reasons of later comparison we note that one prominent technique involves finding
¢ from specific heat data (as explained in the previous section and hence the use of
(1)). In the problem of interacting self-avoiding walks and rings in two dimensions, -
for example, the range of values calculated for the crossover exponent rarge from
0.48+0.07 [12] through 0.577 £ 0.007 [21] to 0.90 = 0.02 [22]. To place the above values
in some context we mention that an exact value has been conjectured [15] for the
1SAW/ISAR problem.of ¢ =3/7~=0.429,

In a recent development the case of partially directed walks was solved exactly [3]
and the collapse transition exponents extracted. In addition, a complete discussion of
each phase and the numerical behaviour of quantities in a finite size scaling analysis
[97 have also been presented. It is clear from these discussions that, while the exact
values of a and ¢ do indeed satisfy the relationship, estimates made from small walk
lengths n up to about 100 are far off their actual values. This discrepancy arises even
when the exact critical temperature is known. If one instead utilizes the common
procedure of using the position and value of the specific heat maxima of finite length
walks to estimate the two exponents then, with some reasonable extrapolation, the
values o =1.30+0,05 and ¢ =0.45+0.03 are obtained [36]. These are extravagantly
different from the correct values of a=1/2 and ¢ =2/3 obtained from the exact
solution! Only by knowing the exact critical temperature and series expansions up to
6000 terms do numerics begin to yield estimates for these exponents within 1% of their
correct values [9]. Remembering that for the wider problem of interacting saw the
critical temperature must also be estimated, and present exact enumeration data extends
to walks of length 40 or so [37], there may be a case for reappraisal of the values of
¢ given in the literature. These considerations, we feel, override the usual gain one
obtains from considering an undirected problem. In the directed problem it was noted
that large corrections to scaling were apparent and that knowing the correction to
scaling exponent a reasonable extrapolation for ¢ can be obtained with walks up to
1000, It is often believed that the calculation of the crossover exponent using series
and Monte Carlo methods is fraught with difficulty due to the strong effect of the
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collapsed phase. In directed walks this can be seen directly by the asymmetry of the
scaling forms and the size of corrections to scaling (of the order n~'/3).

We suggest that to check the reliability of estimates of ¢ that both o and ¢ be
calculated independently in a problem. Whether the relationship 2—a =1/¢ holds or
not will be a significant test of these estimates. We also suggest that estimates be
calculated as a function of the size and extrapolated against a best estimate for the
correction-to-scaling exponent (for example corrections-to-scaling in 1SAW/ISAR may
be of the order n™7, which we add is hardly distinguishable from a constant for
# << 100). This technique will, of course, result in larger error bounds on the estimate,
though hopefully these bounds will encompass the true value! In any case, the
relationship 2—a =1/ ¢ provides a potent test for numerical data in these problems.
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