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Abstract. Much effort has been expended in the past decade to calculate numerically the 
exponentsatthecollapse transition pointin walk,polygonandanimalmodels.Thecrossowr 
exponent .$ has been of special interest and sometimes is assumed to obey the relation 
2 - 01 = 1 f 6 with the a the canonical (thermodynamic) exponent that chanicterizes the 
divergence of the specific heat. The reasons for the validity of this relation are not widely 
known. 

We present a scaling fheory of collapse transitions in such models. The free energy and 
canonical partition functions have finite-length scaling forms whilst the grand partition 
function has a tricritical scaling form. The link between the grand and canonical ensembles 
leads to the above scaling relation. We then comment on the validity of current estimates 
of the crossover exponent for interacting self-avoiding walks in two dimensions and propose 
a test involving the scaling relation which may be used to check these values. 

1. Introduction 

The number of models of a polymer molecule in a dilute solution of a good solvent 
is growing rapidly [l]. Many are constructed to model the collapse phase transition 
that the polymer undergoes as the temperature or the quality of the solvent is reduced. 
At temperatures above the critical temperature the polymer is in an extended or 'coiled' 
phase, whilst below, it collapses to a compact 'ball' shape. Another system with similar 
features is vesicles in solution. These are formed by closed surfaces of lipid membranes 
the shape of which can be controlled by changing the surface or volume fugacity. If 
a distinct shape change occurs at a particular temperature or fugacity then we have a 
phase transition. This behaviour is analogous to the polymer collapse (if we understand 
surface fugacity as playing the role of temperature) and we expect some universal 
features. 

Our paper is concemed with the scaling theory of the phase transition occurring 
in geometric cluster models of linear, ring and branch polymers and of vesicles. We 
shall argue that this class of models has a similar mathematical shc ture  which enables 
us to present a generic set of scaling forms. In particular, we present scaling forms for 
the grand partition function (strictly it is a generalized partition function), the canonical 
free energy and the canonical partition function. The generalized partition function 
has a tricritical scaling form whilst the free energy and partition function have a 
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finite-size CIOSSOV~I scaling form. These scaling forms apply in both the expanded and 
collapsed phases. In the collapsed phase the surface of the polymer plays a significant 
role in the low temperature finite-size scaling form. The scaling forms in the high 
temperature phase lead to the tricritical scaling relation 

where a is the specific heat exponent and 4 the crossover exponent. This scaling 
relation enables us to make some strong comments on recent attempts to numerically 
evaluate the two dimensional crossover exponent of the interacting self-avoiding walk 
model (ISAW) of the collapse of linear polymers. 

The scaling functions we present occur in two forms. The first form is more general 
and assumes the specific heat exponent a exists on both sides of the phase transition. 
The second form assumes a exists only in the high temperature phase. Although the 
second is a particular case of the first, we present it because for several of the models 
the low temperature specific heat is analytic at the collapse transition (and so has no 
singularity there). The models which are known to have this unusual property include 
all vesicle models [Z] and the interacting partially directed walk model (IPDSAW) [3]. 
We will refer to the models whose specific heat is singular on both sides of the transition 
as the symmetric models, and those whose specific heat is analytic in the low temperature 
phase as the asymmetric models. It is not known whether the ISAW model or interacting 
lattice animal models [4] of branched polymers (ILA) are symmetric or not. 

2. Generic structure 

We now define the geometric cluster models more carefully and argue that they all 
have a similar mathematical structure which is conveniently represented by a singularity 
or ‘phase’ diagram. This diagram shows the radius of convergence of the generating 
function of the canonical partition functions. This diagram is important as it is here 
that the tricritical structure of the collapse transition is apparent. The diagram differs 
significantly depending on whether the model is symmetric or not. 

2.1. The models 

The models considered in this paper are deiined by two principal ingredients: (i) the 
monomers of the polymer or lipid layer of the vesicle are represented by a ‘cluster’ of 
sites or bonds on a lattice and (ii) the agent responsible for the phase transition is 
modelled by a nearest-neighbour interaction or equivalent fugacity, such as the surface 
fugacity in vesicles. For example, the cluster of branched polymers is a lattice animal, 
for linear polymers it is a self-avoiding walk, for ring polymers and vesicles it is a 
self-avoiding polygon (though in the latter the cluster size and collapse agents are 
different). Mathematically, each system is characterized by some cluster size n and 
some other parameter that varies the strength of the collapse agent. We now provide 
some concrete and typical examples of the above. 

The ISAW model of polymer collapse consists of a n-step self-avoiding walk with 
an attractive interaction energy -J < 0 between any two nearest-neighbour sites of the 
walk (not connected by a bond of the walk). An example of such a walk is shown in 
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figure l ( a ) .  The canonical partition function for the model is given by 

Z E ( w ) =  x CZ'W" (2) 
config. 

where the Boltzman factor w = exp(PJ), c z '  is the number of configurations with n 
steps and m interactions and the sum is over all configurations of the n-step walk. 

Flgure 1. A selection of cluster models illustrating a typical configuration: (a )  interacting 
self-avoiding walk model of linear polymerslight lines show the nearest neighbour 
interactions, ( b )  self-avoiding polygon model of vesicles-shaded squares show the area, 
( e )  interacting paltially directed self-avoiding walks (only north, south and east steps 
allowed)-light lines show the nearest neighbour interactions and ( d )  T O W - C O ~ V ~ X  self- 
avoiding polygon model-shaded squares show the area. 

From the partition function we construct the generating function, 
m 

G p ( w , z ) =  1 Z ; ( w ) z " .  (3) 
n-L 

The generating function can also be interpreted as a 'generalized' partition function 
with z a fugacity controlling the average length of the walks. A 'generalized' partition 
function differs from a grand partition function in that there is no parameter, analogous 
to the volume, which can be used to take the thermodynamic limit. 

Expressions similar to (2) and (3) occur for the interacting polygon models except 
now the configurations are self-avoiding polygons and n is the length or perimeter of 
the polygons. 

The geometric cluster model of vesicles consists of a self-avoiding polygon with a 
perimeter and area fugacity. As opposed to ring polymers here the area plays the role 
of the size n of the system. An example of such a polygon is shown in figure l(b).  
The canonical 'partition function' is 

Z E ( x ) =  2 p!,?xm (4) 
confi*. 

where p;' is the number of polygons with area n and perimeter m. The sum is over 
all configurations of the polygon with fixed area, n. The generating function is 

m 

G"(x ,Y)=  1 Z".X)Y". ( 5 )  
"=I  
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If G" is interpreted as a generalized partition function then y is an area fugacity. 
Similar expressions are obtained for the lattice animal models of branched polymers. 

2.2. The singularity diagram 

Many features of these cluster models are concisely represented by a 'phase', or 
singularity, diagram. This diagram shows the radius of convergence of the generating 
function which is of particular relevance as it is directly related to the canonical free 
energy. Both equations (3) and (5) for the generating functions are of the same form, 
that is, a generating function of finite polynomials; thus we will use GP in what follows, 
but the derivation is general. The ISAW total free energy is 

(6) 

and assuming the thermodynamic limit exists, we have for the thermodynamic free 
energy per step 

1 
F;(w)=---logZ:(w) 

P 

1 
n-m n f s ( w )  = lim - F:(w) 

which in tum implies that 

F:(w)  = n f s ( w ) + o ( n ) .  

Using (3), (6) and (8) gives (for fixed w) 

(7) 

If GP is considered as a function of the generating variable, z (with w a parameter) 
then (9) implies the radius of convergence of Gp, for each value of w, is given by 
t e-fifi = I, or 

d w )  = exp(M3. (10) 

Thus a plot of zm(w), in the (w, z)-plane is indirectly a plot of the free energy per step 
of an infinite length walk. 

This plot, showing the radius of convergence of the generating function, for each 
value of the temperature variable-w in this case-will be referred to as the singularity 
diagram. Note that the existence of the free energy ensures that zm(w) exists for all 
w > 0 and so (10) implies that zm( w) is always positive. Figure 2 shows two schematic 
singularity diagrams. The first form (Figure 2(a)) is expected to represent the ISAW 
and ILA models, and is known to represent the IPDSAW model [SI. The second form 
(figure 2(b)) is known to represent vesicle models [2,6]. 

Different parts of the singularity~diagram correspond to distinct features of the 
model. Thus for the ISAW model, if in the thermodynamic limit, the model undergoes 
a phase transition at some temperature T., the free energy fg(w) will be singular at 
w,=exp(J/k,T,) and hence so will z,(w). Thus, if z,=zm(wr), we can represent the 
phase transition (in the canonical ensemble) by the point ( w ~ ,  2,). The line zm(w) for 
w < w, corresponds to the high temperature phase, whilst the line zm(w) for w > w, 
corresponds to the low temperature collapsed phase. As GP is a partition function in 
the generalized ensemble we can use it to evaluate averages of thermodynamic variables. 



A scaling theory of the collapse transition 4569 

Figure 2. ( U )  The expected form of the singularity or 'phase' diagram for the interacting 
self-avoiding walk model of linear polymers. ( b )  The singularity or 'phase' diagram for 
the self-avoiding polygon model of vesicles [2]. 

In particular, it is possible to show that the average length of the walk is finite in the 
region 0 G z <z-( w) .  Thus, the region below z . (  w )  corresponds to a finite length 
'phase'. Similar interpretations occur for the vesicle models. Note that the region above 
z,(w) is non-physical for the class of models considered here. (This can be changed 
if the models are extended by introducing a bounding box to contain @e clusters, that 
is, a volume parameter.) 

2.3. Generic structure of symmetric and asymmetric models 

Superficially, the two singularity diagrams (figure 2) appear quite different but by a 
change of variables the generic structure becomes apparent. Firstly, one considers each 
singularity diagram in an equivalent way to the (w ,  z) plane for the walk models: for 
example, in vesicles the (1/& y)-plane is similar. Let us call the abscissa w. Now 
consider the function zm(w)  at low temperatures, that is large w, and call this z:(w). 
There are two possible cases. 

Firstly, if this function is analytic for all w including w. then we can transform our 
variables to a generic pair (w ,  q )  where qm(w) =1 for all o> wc.  (Of course z L ( w )  
must then have a singularity at U. for some transition to exist!) For vesicles we have 
simply that w = l /x  and q = y  and in the IPDSAW problem we have w = w and q = wz: 
In general we have q = z /z : (w)  and so we can define a. generic partition function as 
Q.(w) = [z,(o)]"Z.(o). The generic generating function is 

and the corresponding singularity diagram in the (w ,  q )  plane is shown in figure 3(a). 
Secondly, if this assumption of analyticity of z:(w) at w, is false then let u s  examine 

the asymptotic behaviour of zm(w) as w+w, that is, as the temperature approaches 
zero. Let 

4 0 )  - z a ( 0 )  (12) 
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Asymmetric Models Svmmetric Models 

- 
o - tempemcure variable o - tempemlure ctriahle 

Figore 3. The schematic singularity diagrams, in the generic variables o and q, ( a )  for the 
asymmetric models and ( b )  for symmetric models (the low and high temperature lines are 
curved but whether they a n  wncave or convex will be model dependent. The dashed line 
in both figures is the line q = 1. 

so by using a suitably chosen z.(w) in this case, in the same fashion as z;(w) for the 
previous case, we obtain a phase diagram as shown in figure 3(b) .  Hence q = z /z . (w)  
and Q J w )  =[z . (0 ) lnzn(O) .  

The above is simply describing transformations which allow us to consider the 
generic forms (figure 3) of the phase diagrams for these models. We have divided the 
models into two categories, the first we shall call asymmetric while the second symmetric. 
This partitioning of the models into two categories becomes logical when we examine 
the generic free energy& = -limn-- log( Qn) /Pn .  The radius of convergence of G ( w ,  q )  
occurs for 

= eXp(PfXw)) (13) 
and the phase transition occurs at w = w. and qc= q-(w,). If the phase transition is 
second order, then the singular part of the free energy would be expected to behave like 

fm- t2-=' t = T - T . .  (14) 
For the asymmetric models (figure 3(a)) the radius of convergence in the low tem- 
perature phase has q;(w) = 1 for all w > we.  This implies that the low temperature 
generic free energy, pf: = log[qZ( U ) ]  is zero for w > U. and hence (trivially) an entire 
function. Thus the asymmetric models do not have a singular specific heat in the low 
temperature phase, that is, a non-trivial a does not exist. Whereas, for the symmetric 
models (figure 3(b)) the free energy in the low temperature phasefi  is some singular 
function of w which gives rise to an a in the low temperature phase. In the high 
temperature phase the specific heat of both the symmetric and asymmetric models is 
singular, that is, a non-trivial a exists. Thus the symmetric models have an a in both 
phases whilst the asymmetric models only have a high temperature a. The nomenclature 
is therefore self-evident. 

While one would normally expect symmetric transitions in other models (such as 
Ising) recent exact and rigorous results point in the other direction for certain geometric 
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models [2,6]. There remains the intriguing possibility that all the models might be 
asymmetric and thus, with appropriate choice of the q variable, figure 3(a) would be 
the generic form of the singularity diagram. 

Whichever category the model falls into we now summarize the mathematical 
aspects of behaviour of the generating function necessary to produce the scaling forms 
subsequently given. We conjecture that in the high temperature phase, q:(o) is a line 
of simple singularities (e.g. a pole, branch or log singularity) and hence the generating 
function diverges, whilst in the low temperature phase &.(a) is a line of essential 
singularities. (We describe these assumptions mathematically later). The essential 
singularity is such that G remainsfinire on the line q;(a). The evidence comes from 
two sources. Firstly, all the exact solutions of vesicle models [5] and the IPDSAW model 
[ 6 , 3 ]  have this structure, and secondly there is a very close relationship between the 
above class of models and the problem of condensation in fluids. (These features do 
not depend on the symmetry of the transition.) As shown by Fisher [ 7 ]  the condensation 
line is a line of essential singularities. The consequences of this relationship have 
already been shown in Owczarek el or [SI and further details may be found in 
F’rellberg et al [ 9 ] .  

This singularity structure is significant as it brings to mind the singularity structure 
of a tricritical phase transition. If a tricritical point is taken to be the meeting point 
of a line of first order transitions (essential singularities) with a line of second order 
transitions (simpler singularities), then, at least for O < q q  %(a), the singularity 
structure of G corresponds to that of a tricritical phase transition, with (oc,qc) 
corresponds to the tricritical point. This leads directly to the tricritical scaling form 
for the generating function. 

3. Scaling forms 

We now consider the scaling forms. In the canonical ensemble the partition function 
and the free energy both depend on the length parameter n. In the limit n +CO we have 
the thermodynamic limit and it is only in this limit that we have the possibility of a 
phase transition. However, ifthe thermal correlation length is smaller than the average 
size of the finite length walk the system behaves thermodynamically as if it was of 
infinite size. As the critical temperature is approached the thermal conelatitDn length 
begins to diverge, as if it were an infinite system, and at some stage approaches the 
size of the system. The finite size aspects of the system then dominate. Thus  he system 
crosses over from one type of behaviour to another. This crossover behaviour is 
described by the finite-size crossover scaling functions of the free energy and partition 
function. 

As discussed above the generating function or generalized partition function has 
a tricritical singularity structure and so in the region of the tricritical point is represented 
by a tricritical scaling function. 

We thus have two types of scaling behaviour, finite-size scaling and tricritical 
scaling, and consequently a large number of critical exponents. This can lead to 
confusion, not only as to which type of scaling the exponent is associated with, but 
also because exponents using the same symbol may be confused with those already 
in use in the general literature. It is for these reasons that we first summarize the 
structure of a conventional tricritical point and so establish a ‘generic’ set of tricritical 
exponents. 
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3.1. Conventional tricritical scaling 

We shall keep as close to Griffiths [lo] and Lawrie [ll] as possible. The stmcture of 
a conventional tricritical point and the associated exponents is illustrated in figure 4. 
These exponents are emphasized by superscripting with g (for 'generic'). Here, t is 
taken as a temperature variable measuring the tangential deviation from the tricritical 
point, and g is the second scaling variable measuring an angular (that is, uon-tangential) 
deviation from the tricritical point. Generally a first order phase transition occurs as 
the d i n e  is crossed (and is usually a line of essential singularities) and a second order 
phase transition occurs as the A-line is crossed (and is usually a line of branch or 
pole-like singularities). The 7-line and A-line are assumed to meet tangentially at the 
tricritical point. The equation, gA( t )  of the ,#-line in the neighbourhood of the tricritical 
point is characterized by the shift exponent #f through 

and similarIy for the 7-line?. 

Figure 4. Conventional tricritical scaling diagram showing the two scaling axes g and i 
and the associated exponents. The large arrows show the path of approach associated with 
the corresponding exponent. 

It is assumed that the free energy is only singular on the T and A lines and analytic 
elsewhere in the ( t .  g) plane. In the neighbourhood of the tricritical point the singular 
part of the canonical free energy is assumed to have the scaling form 

R'(g, t ) -  It12-"'?*(gltl-m") 

where ?'(x) is the scaling function, which is analytic in the,neighbourhood of x=O 
and generally depends on the sign of t-as denoted by the A. The tricritical exponent 
ay is defined by the relation 2 - a f - ( 2 - a 3 / + g .  The exponent +g is the tricritical 
crossover exponent. 

+Note that in this paper we takef(x)-g(x) to mean lim,~_,~,ffg=consrnnlfO (rather than one). This 
avoids the frequent introduction of constants. 
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Along the A-line, for t > 0 and for fixed g < 0 the free energy is assumemd to have 
the asymptotic form 

R ( g ,  t)--o(g)+rl(g)lt12-". (17) 
where i = t - g A ( t )  and r d g )  and r l (g )  are analytic functions. Consistency of (16), (17) 
and the analyticity of the free energy elsewhere in the ( t ,  g )  plane require that the shift 
exponent and crossover exponents be equal: 

*f = 4 g .  (18) 

The assumed non-cuspish shape of the A-line implies that 4x  3 1. A similar argument 
leads to +: = +g. Note that if the T line corresponds to the scaling axis then $: is not 
dehed .  

3.2. Tricritical scaling of the generating function 

We begin by defining the ingredients that go into forming our scaling picture. At high 
temperatures (small w )  the generating function is assumed to be characterized by the 
exponent y+ as q + q m ( w )  from below at fixed o: 

4 )  - (qm(O)  -q)-'+. (19) 

(20) 

At the critical point a different exponent yt is assumed to replace y+ so 

G ( w c ,  4 )  - (qm(Vc)- q)-". 

However at low temperatures (o > w.) we assume that G converges in the limit 
q --f q-(w), though with an essential singularity which we describe later. Now; assuming 
that tricritical scaling holds around the point (wc, q.) we can proceed to write down 
the scaling forms. Firstly we transform to scaling axes, if necessary. To set up the 
appropriate coordinate system for scaling we use the notation E for the thermal scaling 
field and p for the fugacity field. In the asymmetric case we have simply E = 0.- o 
and p = qc- q, while in the symmetric case~these are chosen appropriately tcm amve at 
a scaling-region-singularity diagram as in figure 5. 

P 
Figure 5. Schematic tricritical s,caling diagram of the generating function (or generalized 
partition function) showing the scaling axes p and E and the associated exponents. The 
low temperature line coincides with the 6 axis for asymmetric models, but goes above (as 
shown), or possibly below, for the symmetric models. 

~~ 
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The location of the E scaling axis fall into two cases: (i) for the asymmetric models 
the E scaling axis corresponds exactly to the singular line while (ii) for the symmetric 
models the low temperature scaling axis does not correspond with the singular line 
(but is tangential at (40)). In the neighbourhood of the point (&,p )=(O,O)  the 
generalized canonical partition function has a singularity structure of the same form 
as a conventional tricritical point. Thus, for E > 0, the shape of the p i ( & )  line (being 
the transformation of the line q;(o)) defines a shift exponent through 

p f -  E* ( E  > 0) .  (21) 

(Note that one must choose p so that the leading order of the asymptotic form is given 
by the singular part of P + ( E ) . )  For the asymmetric models there is no shift exponent 
for E < 0 as the first order line coincides with the scaling axis, whilst for symmetric 
models there is a low temperature shift exponent. The singular part of G has the 
scaling form 

G'(~,p)- l&l-~"g*(pl&l"'+)  

where the * superscripts refer to temperatures above and below the critical temperature. 
The exponent y. is defined by yu := y,/4 and 4 is the tricritical crossover exponent. 
We do not define more precisely the behaviour of g-(x) as it approaches the essential 
singularity other than the note that it occurs at some point, i- say, which may be zero. 

For E > 0,  G is singular along the line P + ( E ) .  Here, for p G p + (  E ) ,  G diverges with 
the asymptotic form 

G - & ( ~ ) + ~ I ( E ) ( P + ( E )  -PI-". (23) 

This requires the scaling function g'(x) to have a singularity at x = x+, where it behaves 
like 

g+(x)- (x -x+) -Y*  x -f x+. (24) 

As G is singular along the line p + ( ~ )  and analytic below, it ensures that + = 114. Note 
that there is a small difference between the scaling form (22) and the conventional 
scaling form in that q5 corresponds to l/@, which we define to be consistent with the 
literature on walk and polygon problems. 

We now compare (21) with (14) and use the fact that the line defined by ~ ' ( 8 )  is 
related to the free energy through (13) and E - t then considering the singular parts 
of both functions at the critical point leads immediately to 

*=2-ff. (25) 

This is the first relation between exponents in different ensembles: the shape of the 
high temperature line in the generalized ensemble is related to the specificheat exponent 
in the canonical ensemble. This relation subsequently leads to the relation (1) because 

A word of explanation on the use of the character 'y' in the tricritical scaling form: 
We use y (as opposed to some other Greek character) because G is a generating 
function analogous to non-interacting self-avoiding walks where the asymptotic form 
of the generating function is characterized by the exponent y. Note that for the 
self-avoiding polygon model of vesicles y is usually replaced by 2-aM, because this 

$ = 1 / C  
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polygon model maps onto a magnetic model where aM is the magnetic specific heat 
exponent. This exponent is not the same as the (Y we have previously mentioned. 

3.3. Canonical sealing 

In this section we consider the scaling for& of the canonical partition function and 
the canonical free energy. Several ingredients have gone into the construction of these 
scaling forms which we briefly discuss before presenting the scaling forms. 

Firstly they must describe finite-size crossover. A finite length walk does not undergo 
a phase transition. All finite n thermodynamic functions must be analytic functions of 
the temperature and number of steps. It is only in the thermodynamic limit n .+ 00 that 
we have a phase transition and non-analyticity. The crossover from the finite size 
behaviour to the infinite size system occurs when the thermal correlation length falls 
below the average physical size of the walk. The finite-size crossover behaviour is 
characterized by a crossover exponent, &. We show later that & in fact equals the 
tricritical crossover exponent, q5. 

Secondly, the partition function is generated by G(o, q): It is well known that the 
generating function for non-interacting self-avoiding walks has the asymptotic form 
W(z)-  (z-zJy, which in turn means that the asymptotic number of n-step walks 
behaves like zZ"nY-'. Now, as Q. is generated by G(o, q) ,  this would suggest that 
Q. - qm(w)-"nY-'. Furthermore, the tricritical scaling of G requires the value of y to 
be different for w < w. and w = w. where the above behaviour of the generating function 
is believed to hold. 

Thirdly,   the collapse models are related to the condensation transition of fluids. 
As already shown [SI we expect a surface area contribution to the free energy in the 
low temperature phase. The argument presented requires the free energy to have an 
nr term with O<u< 1-l/d ( u = l - l / d  occurs if the surface is 'smooth'). This is 
possible if Q. - qZ"p:rnY--', for some p,. Note that the factor of n7--' is allowed  for^ 
the sake of generality but does not implythe (q - qJy form in the generating fimction. 

For convenience, figure 6 shows the asymptotic region the canonical scaling func- 
tions must represent and the associated exponents. The dashed line is the locus of 
specific heat maxima and, unlike the tricritical singularity structure, this is not a line 
of singularities. This is a fundamental difference between tricritical scaling and finite- 
size scaling. For finite n the partition function must be analytic in w and conventional 
scaling arguments [ l l ]  would suggest that the finite-size scaling function should be 
analytic at the origin. Putting all the above arguments together gives rise to the partition 

~ 

~ 

I 
t" . n* 

Figure 6. Finite-size crosspver scaling diagram showing the scaling axis l / n  and t = T-  Tc 
and the associated exponents, The large a m w s  show the path of approach associated with 
the corresponding exponent. The line n% is the locus of specific heat~maxima. Note that 
this is not a line of singularities (unlike the lines in the tricritical scaling diagrams). 
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function scaling form 

Q.(o) - [ q Z n 7 ~ ~ ' i ( 8 w n m ~ )  

x-(Yt - Y+)/40P:'/*c as x++m (26) 
XI - ( y, - y-)/~&l"l""f.!"l"*' 

where & is the analytic part of q,(w) and p* and ,U$ are constants with 

as x+ -m 
3 X )  - [, 
p-> 1 (symmetric models) 

+=1 (asymmetric models). 
(27) 

Given this scaling form for the partition 'function we can now deduce the scaling 
form for the free energy. Substituting (26) into (6) and using 6w - t gives the finite 
size scaling of the singular part of the free energy as 

f . ( f ) - , A ( n + = . t )  1 

~ x l l ~ ,  as x-+m 

R x ) -  IXl"+C as x + -a (asymmetric models) (28)  I lxll'*- as x+ -a (symmetric models). 

Let us for a moment focus on the high temperature situation. This scaling form for fz implies that 

f ;  - t'l+. (T> TJ. (29) 

This is only consistent with (14), if the tricritical scaling relation 

(30) 1 2 - a = -  

is satisfied. Thus, we see that the assumed scaling form of the canonical partition 
function leads, via the induced free energy scaling, to the tricritical scaling relation. 
Comparing the tricritical scaling relation (30) with (21) shows that + = l /& and hence 

+c=@ (31) 

Thus the tricritical crossover exponent is equal to the finite-sue crossover exponent. 
Furthermore, one can equally well show, although tortuously, that by only assuming 
a scaling form for the free energy (with some +o and satisfying (14) in the n + m limit) 
that consistency with the tricritical scaling of the generating function leads to the two 
equations above. 

As an aside, to which we shall retum, the scaling form (28) is frequently used in 
numerical procedures to estimate the value of the crossover exponent. With this scaling 
form it is possible to show that if the finite length intensive specific heat has a maximum 
height at some temperature, f ,  then the height, h, and t,, behave (given a > 0), for 
n + 00 like, 

(32) 

(Note that if a < O  then k, - 1.) We make further comments on the use of (32) in the 
discussion section. 

h, - na+c 

t. - n-+c .  
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We have shown that the simple assumption of a generic crossover phenomenon places 
restrictions on commonly defined exponents at the collapse transition in an interacting 
geometric cluster model. In particular the relationship 2-  (Y = 1/4 is a straightforward 
consequence of this mild and common assumption. The conclusion of chis clear 
argument is now wed to throw light on a wide range of problems which have been 
investigated in the literature. 

The crossover exponent at the collapse transition is a value of perennial interest 
in many problems (especially in two dimensions where it should take on a non-trivial 
value) such as interacting self-avoiding walks [12-211 and (the related problem of) 
rings 1221, interacting self-avoiding trails [23-261, vesicles [27,2], interacting walks 
and trails on a Manhattan lattice [28,29], interacting partially directed walks [30] and 
site lattice animals/branched polymers [31-351. Attempts at discovering its value in 
these systems has been made with a variety of methods including transfer matrix [l2, 
14,29-311, exact enumeration/series extrapolation [13,22,23,27,2,35], Monte Carlo 
[16-21,24-26,32-341 and renormalization group techniques [12,16-191. The assump- 
tions involved in considering the collapse transition as a generic crossover phenomena 
are widespread. Importantly, often the relationship (1) is assumed in these calculations. 
For reasons of later comparison we note that one prominent technique involves finding 
4 from specific heat data (as explained in the previous section and hence the use of 
(1)). In the problem of interacting self-avoiding walks and rings in two dimensions, 
for example, the range of values calculated for the crossover exponent range from 
0.48*0.07 [12] through 0.577*0.007 [21] to 0.90+0.02 [22]. To place the above values 
in some context we mention that an exact value has been conjectured [lSI for the 
ISAWIISAR problem~of 4 =3/7=0.429. 

In a recent development the case of partially directed walks was solved exactly [3] 
and the collapse transition exponents extracted. In addition, a complete discussion of 
each phase and the numerical behaviour of quantities in a finite size scaling analysis 
[9] have also been presented. It is clear from these discussions that, while the exact 
values of (Y and 4 do indeed satisfy the relationship, estimates made from small walk 
lengths n up to about 100 are far off their actual values. This discrepancy arises even 
when the exact critical temperature is known. If one instead utilizes the (common 
procedure of using the position and value of the specific heat maxima of finite length 
walks to estimate the two exponents then, with some reasonable extrapolation, the 
values a = 1.3010.05 and 4 =0.45*0.03 are obtained [36]. These are extravagantly 
different from the correct values of a = 1 / 2  and + = 2 / 3  obtained from the exact 
solution! Only by knowing the exact critical temperature and series expansions up to 
6000 terms do numerics begin to yield estimates for these exponents within 1% of their 
correct values [9]. Remembering that for the wider problem of interacting  SAW^ the 
critical temperature must also be estimated, and present exact enumeration data. extends 
to walks of length 40 or so [37], there may be a case for reappraisal of the values of 
4 given in the literature. These considerations, we feel, override the usual gain one 
obtains from considering an undirected problem. In the directed problem it was noted 
that large corrections to scaling were apparent and that knowing the correction to 
scaling exponent a reasonable extrapolation for 4 can be obtained with walks up to 
1000. It is often believed that the calculation of the crossover exponent using series 
and Monte Carlo methods is fraught with difficulty due to the strong effect of the 
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collapsed phase. In directed walks this can be seen directly by the asymmetry of the 
scding forms and the sue  of corrections to scaling (of the order n-"". 

We suggest that to check the reliability of estimates of 4 that both (1 and 4 be 
calculated independently in a problem. Whether the relationship 2- (1 = 114 holds or 
not will be a significant test of these estimates. We also suggest that estimates be 
calculated as a function of the size and extrapolated against a best estimate for the 
correction-to-scaling exponent (for example corrections-to-scaling in JSAW/ISAR may 
be of the order which we add is hardly distinguishable from a constant for 
n < 100). This technique will, of course, result in larger error bounds on the estimate, 
though hopefully these bounds will encompass the true value! In any case, the 
relationship 2 - 01 = 114 provides a potent test for numerical data in these problems. 
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